Name:

Gender: M F Today's Date:

School:

Science Teacher: Period:

Evolution Lab

This simulation allows you to explore the effects of two factors that influence the evolution of a population - MUTATION RATE and SELECTION STRENGHT.

We use a population of 20 blue organisms. They are predators who try to catch their 0 prey by extending the grabber on top of their head (see picture to the left).

- In each round, the organism that has gone the longest time without eating (indicated 0 by the 'hunger level') will die. Another organism that successfully caught the prey will produce offspring, which will take the spot of the deceased.
- The length of the grabber can randomly mutate longer or shorter. A longer grabber 0 means better reach for prey, and more frequent offspring.

INSTRUCTIONS

- 1. Click the small green arrow in the upper left corner. You skip through the introductory pages until you reach the simulation main window (shown below).
- 2. Hit the 'GO one cycle' button a few times to see how the simulation works.
- 3. Press the 'Reset' button. You have to reset after each experiment.
- 4. Use the 'settings' button to change the values for mutation rate and selection strength for each experiment (values are given in table on the next page).
- 5. Run the four simulations by using the three different green 'GO'-buttons for 1, 5, or 50 generations at a time.
- 6. <u>Write</u> down the values of mean grabber length ('Mean Phenotype') in the <u>data tables</u>.
- 7. Create a graph for the data of each simulation. Use different colors or symbols for each trial. You will have four lines on your graph; one for each simulation.
- 8. Answer the final analysis questions.

Interpretation of Mutation rate

- Low mutation = $0 \rightarrow No$ mutations happen.
- High mutation = $1 \rightarrow$ Mutations happen very frequently. This leads to high genetic diversity!

Interpretation of Selection strength

- <u>Low</u> Selection strength (stable environment) = 0 → Beneficial traits (longer grabber) have no advantage (because prey comes down vertically and can be grabbed by only one single organism).
- <u>High</u> selection strength (Competitive or changing environment) = 1 → Longer grabber become beneficial because prey gets in reach of several organisms and they have to fight for it!

Trial 4.	Sele	ction str	ength: 1		My prediction for the development of aver length: Choose one.				rage grab	age grabber		
Trial 1:	Mutation Rate: 1				Shorter				Both			
					Longer				No change			
Cycle	0	10	20	30		40	50	100	150	200	250	
Mean												
Phenotype												

Trial Or	Sele	ction stre	ength: 1		My leng	My prediction for the development of average grabber length: Choose one.							
Trial 2:	Mutation Rate: 0				Shorter				Both				
					l	Longer			No change				
Cycle	0	10	20	3	0	40	50	100	150	200	250		
Mean Phenotype													

Trial 3:	Sele	ction stre	ength: 0		My prediction for the development of length: Choose one.				ent of ave	erage grabber		
	Muta	Mutation Rate: 1					Shorter		Both			
							Longer		No change			
Cycle	0	10	20	3	0	40	50	100	150	200	250	
Mean Phenotype												

Trial 4:	Selection strength: 0					My prediction for the development of average grabber length: Choose one.								
	Muta	tion Rate	e: 0				Shorter		Both					
						l	Longer		No change					
Cycle	0	10	20	3	0	40	50	100	150	200	250			
Mean														
Phenotype														

YOUR ANALYSIS

According to your observations, what grabber length is beneficial in ...
a. Stable environment (selection strength=0)

□ Longer/	□ Shorter	/ 🗖 Both	/ \square It cannot be determined	
Ь.	Changing, cor	mpetitive envir	conment (selection strength=1)	
□ Longer/	□ Shorter	/ 🗖 Both	/ \square It cannot be determined	

2) How did mutations influence the length of the grabber?

□Longer/ □Shorter /□Both

3) Effects of **Mutation**: How did the mean phenotype (grabber length) of the population with no mutations (=clones: See experiments 2+4) develop compared to the population with high genetic diversity (mutations = 1: See experiments 1+3) after 250 generations?

Populations with **no** mutations ...

Populations with many mutations ...

Explain your findings.

4) Effects of **Selection**: What effect did a different 'selection strength' have on the development of the mean phenotype (grabber length) of the population? Compare outcome of experiment 1 (strong selection) to experiment 3 (no selection).

High selection strength causes the mean phenotype to

Low selection strength causes the mean phenotype to

Explain your findings.

5) Your conclusion: What kind of colonist population has the highest chance of adapting and surviving in the changing and competitive environment of a new planet?